Theoretical Mechanics
Mid-Term Solution

1. The Lagrangian for the cart is
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Because the bob is attached to the cart, the Lagrangian for the bob is
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a. Neglecting inessential constants, in the small oscillation approximation the total
Lagrangian is
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The equations of motion are
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Taking the second variable to be L&, the mass matrix is
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c. The plus normal mode has
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The bob moves antisymmetric to the cart with an amplitudeﬁ times larger.
The minus normal mode has
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The bob moves symmetric with the cart with an amplitudeﬁ times larger.



2. As mentioned several times in lectures, a good way to understand the magnetic field is in terms of
the magnetic field form

wf = B,dy Adz+B,dz Adx+B,dx Ady,
where B is the usual magnetic field “vector”.
a. How is the Maxwell Equation V- B = 0 expressed in terms of the exterior derivative?

dew} =(V-B)dxady Adz=0

Therefore, the magnetic field form is a closed form.

b. Supposey is closed curve and o, and o,, two non-intersecting surfaces with

0o, =00, =y . Show, using generalized Stoke’s Theorem
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In other words, the magnetic flux through a closed loop is independent of the surface used to
compute it.

Let V be the volume enclosed by the two surfaces. Then 6V = o, — o, , Where it is
assumed that the surface normal for o, points out of the volume and the surface
normal for o, points into the volume. By the generalized Stoke’s Theorem
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c. If a magnetic vector potential A is found such that B = V x A, what is J.a)i ?
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Again we can apply generalized Stoke’s Theorem
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3. The Lagrangian for the one dimensional motion of a particle in a uniform gravitational is
m »
L= Evy —mgy,

where y is a vertical coordinate and v, =dy/dt.

a. Show the Hamiltonian is
2

H(y, p)=p—+mgy,
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b. Show the Hamiltonian equations of motion give the usual Newtonian equation for a



uniformly accelerating motion.
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Is the Hamiltonian explicitly dependent on time? No
What is the Hamilton-Jacobi equation for this problem? The action solves
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Solve the Hamilton-Jacobi equation for the action function S(y,a,t). Let
B=0510a.Solve fory=y(a,p).
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Show the initial conditions applied to the solution in d. yield the constants of the
motion
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and the usual equation for uniform acceleration.
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